Sparse recovery based on q-ratio constrained minimal singular values

نویسندگان

  • Zhiyong Zhou
  • Jun Yu
چکیده

We study verifiable sufficient conditions and computable performance bounds for sparse recovery algorithms such as the Basis Pursuit, the Dantzig selector and the Lasso estimator, in terms of a newly defined family of quality measures for the measurement matrices. With high probability, the developed measures for subgaussian random matrices are bounded away from zero as long as the number of measurements is reasonably large. Comparing to the restricted isotropic constant based performance analysis, the arguments in this paper are much more concise and the obtained bounds are tighter. Numerical experiments are presented to illustrate our theoretical results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of LASSO and Dantzig Selector via Constrained Minimal Singular Value of Gaussian Sensing Matrices

In this paper, we introduce a new framework for interpreting the existing theoretical stability results of sparse signal recovery algorithms in practical terms. Our framework is built on the theory of constrained minimal singular values of Gaussian sensing matrices. Adopting our framework, we study the stability of two algorithms, namely LASSO and Dantzig selector. We demonstrate that for a giv...

متن کامل

Restricted Isometry Constants where p sparse recovery can fail for 0 < p ≤ 1

This paper investigates conditions under which the solution of an underdetermined linear system with minimal � norm, 0 < p ≤ 1, is guaranteed to be also the sparsest one. Matrices are constructed with restricted isometry constants (RIC) δ2m arbitrarily close to 1/ √ 2 ≈ 0.707 where sparse recovery with p = 1 fails for at least one m-sparse vector, as well as matrices with δ2m arbitrarily close ...

متن کامل

RESTRICTED ISOMETRY CONSTANTS WHERE l p SPARSE RECOVERY CAN FAIL FOR 0 < p ≤ 1

We investigate conditions under which the solution of an underdetermined linear system with minimal lp norm, 0 < p ≤ 1, is guaranteed to be also the sparsest one. Our results highlight the pessimistic nature of sparse recovery analysis when recovery is predicted based on the restricted isometry constants (RIC) of the associated matrix. We construct matrices with RIC δ2m arbitrarily close to 1/ ...

متن کامل

Performance of Jointly Sparse Support Recovery in Compressed Sensing

The problem of jointly sparse support recovery is to determine the common support of jointly sparse signal vectors from multiple measurement vectors (MMV) related to the signals by a linear transformation. The fundamental limit of performance has been studied in terms of a so-called algebraic bound, relating the maximum recoverable sparsity level to the spark of the sensing matrix and the rank ...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06358  شماره 

صفحات  -

تاریخ انتشار 2018